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Abstract. The concept of frustrated phase separation is applied to investigate its consequences for the
electronic structure of the high Tc cuprates. The resulting incommensurate charge density wave (CDW)
scattering is most effective in creating local gaps in k-space when the scattering vector connects states
with equal energy. Starting from an open Fermi surface we find that the resulting CDW is oriented along
the (10)- and (or) (01)-direction which allows for a purely one-dimensional or a two-dimensional “eggbox
type” charge modulation. In both cases the van Hove singularities are substantially enhanced, and the
spectral weight of Fermi surface states near the M-points, tends to be suppressed. Remarkably, a leading
edge gap arises near these points, which, in the eggbox case, leaves finite arcs of the Fermi surface gapless.
We discuss our results with repect to possible consequences for photoemission experiments.

PACS. 74.72.-h High-Tc compounds – 74.25.-q General properties; correlations between physical properties
in normal and superconducting states

1 Introduction

Striped phases are an important issue in the discus-
sion on physical properties of the high-Tc materials [1,2].
Incommensurate magnetic peaks displaced from the
antiferromagnetic wave-vector along kx and ky have
been observed by inelastic neutron scattering in both
La2−xSrxCuO4 [3–5] and YBa2Cu3O7−x (YBCO) [6],
whereas in the Bi2Sr2CaCu2O8 material the incommensu-
rate magnetic peak position has not yet been resolved [7].
However, incommensurate magnetic scattering may result
from either some kind of spiral phase (involving a mod-
ulation of the transversal spin components only) or from
longitudinal spin fluctuations where in this case a strong
coupling to the charge is expected. Evidence for coopera-
tive charge- and spin scattering is based on the observation
of domain walls in La1.6−xNd0.4SrxCuO4 [8] where the
low temperature tetragonal lattice structure and the fill-
ing close to 1/8 are suited to pin the density fluctuations,
giving rise to a static CDW phase as revealed by commen-
surate ionic shifts observed in neutron scattering. From
the temperature dependence of the charge- and spin-order
peaks one can further conclude that the stripe order is
driven by the charge rather than by the spins. Additional
support for charge induced stripe correlations is provided
by recent neutron scattering studies of the phonon dis-
persion in YBCO [9]. These measurements show a large
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broadening in the spectrum at wave vectors which are
twice the magnetic incommensurability. Moreover, the
broadening in the phonon spectrum occurs at higher tem-
peratures than the incommensurable magnetic peaks in-
dicating again that charge fluctuations are the “driving
force” behind incommensurable magnetic scattering.

The formation of stripe correlations in these com-
pounds can be well understood within the concept of
frustrated phase separation [10] where a phase sepa-
ration instability is prevented by long-range Coulomb
interactions [11]. As a result the long-wavelength den-
sity fluctuations associated with phase separation are
suppressed in favor of shorter-wavelength density fluc-
tuations, giving rise either to dynamical slow density
modes [10] or to incommensurate charge density waves
(CDW) [1,12]. Concerning the pairing mechanism the
theoretical proposals differ with regard to the role of the
stripe correlations on the superconducting pair formation.
Whereas some theories consider the formation of quasi
1-d “rivers of charge” as a necessary environment for the
quasiparticles to pair or to enhance Tc [2,13] others take
the fluctuations associated with the stripe instability
itself as a pairing mechanism [1].

The proximity to a stripe instability tuned by dop-
ing and temperature allows to interpret many proper-
ties of the cuprates as due to a Quantum Critical Point
(QCP) [14] located near optimal doping [1,15–17]. Within
this scenario the singular scattering induced by the critical
fluctuations would be responsible for both the anomalous
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normal-state properties and the large superconducting
critical temperatures. Then the phase diagram of the
cuprates is partitioned in the (nearly) ordered, the quan-
tum critical, and the quantum disordered regions corre-
sponding to the under-, optimally, and over-doped regions
of the phase diagram of the cuprates.

The relevance of the stripe phase and of the stripe
fluctuations should find an experimental confirmation (or
a disproof) in the analysis of the single-particle spectral
properties. Taking the point of view that incommensurate
CDW scattering contributes to determine the electronic
properties of the high-Tc materials the question arises how
the electronic structure around the Fermi energy is af-
fected by this scattering and if this can be detected by
angle-resolved photoemission spectroscopy (ARPES) [18].
In fact, there are several features which seem to be com-
mon to all p-type cuprates (see e.g. Ref. [19] and references
therein). In particular, the dispersion displays an extended
saddle-point at (π/a, 0) (where a is the lattice spacing)
with an energy close to EF, which has been observed in
Bi2212 [20] as well as in YBaCuO [21] samples. Further-
more, the Fermi surface of Bi2212 is very strongly nested
with a nesting vector of approximately 0.9 (π/a, π/a). The
resulting picture for the Fermi surface therefore consists of
tube-like structures around the M -points which are con-
nected by more or less straight pieces. It has been shown
in reference [22] that many of these unusual Fermi surface
features can be explained by assuming a disordered stripe
phase to be present in the high-Tc copper oxides. The fact
that the charge carriers are exposed to a stripe poten-
tial mirrors in the Fermi surface through one-dimensional
characteristics which predominantly appear around the
M -points.

A further fascinating Fermi surface feature of the high
Tc superconductors, which has been detected in ARPES
measurements concerns the pseudogap phenomenon which
is observed in optimally and underdoped bismuth com-
pounds below a doping dependent temperature T ∗ >
Tc [23–26]. In underdoped samples of Bi2212 [23,24] there
is a qualitative change in the electronic structure with
respect to the optimally doped system already above Tc,
with the appearance of so-called leading-edge gaps around
the M points. In these k-space regions there is no indi-
cation of a quasiparticle peak, and the spectra are dra-
matically broadened and shifted to higher binding ener-
gies with a maximum at 100–200 meV. As a consequence
large portions of the Fermi surface around these points
are not visible whereas along the Γ → X directions the
spectral lineshapes are similar to those of the optimally
doped samples. Similar results where obtained in the one-
plane material Bi2201 [25] showing that bilayers are not
essential to the pseudogap phenomena.

A common explanation for the features described
above is based on the existence of pre-formed pairs already
above Tc, since a continuous evolution of the spectra from
the normal to the superconducting state [27] was appar-
ently observed. In particular, a superconducting d-wave
gap is in accordance with the symmetry of the pseudo-
gap. Moreover, for materials with kFξ0 < 10 the existence
of two temperature scales for pairing and phase coherence

is a rather natural consequence. However, this simple sce-
nario is put in jeopardy by various experimental findings.
First of all the rapid increase of T ∗ by decreasing doping is
to be contrasted with the much more moderate increase of
the maximum gap at low temperature. (T ∗ doubles when
Tc goes from 90 K to about 75 K in Bi-2212, whereas in
the same doping range, ∆(T = 0) around the M -points
changes by thirty per cent at most.) This suggests that
a substantial temperature dependence of the pairing po-
tential is present in this doping range. Furthermore re-
cent ARPES experiments [28] show that the pseudogap
above Tc gradually appears at the M points leaving ex-
tended segments of the Fermi surface gapless. These seg-
ments continuously shrink to a point-like node only below
the superconducting critical temperature Tc. Needless to
say that these behaviors do not correspond neither to the
usual BCS gap opening process nor to the phase locking
of uniform preformed pairs. Instead it might find an inter-
pretation along the line of coexisting pairs and fermionic
quasiparticles [29,30].

In front of this unsettled issue, one may ask whether
the rich and unexplained behavior of the pseudogap phe-
nomena could result from an electron-hole pair scattering
above Tc rather than from pair correlations alone. This
line of argumentation has been followed in several anal-
yses based on the scattering between fermions and col-
lective spin excitations [31–33]. A quite similar outcome
would instead arise from the quasiparticles being scattered
by incommensurate charge fluctuations [34]. The fact that
a substantial part of the spectral features of the optimally
and underdoped cuprates can be explained in terms of
particle-hole scattering is also supported by recent ex-
periments [26] measuring the Fermi surface by sequential
angle-scanning photoemission. These results clearly show
the missing segments of the Fermi surface around the M -
points with a shape, which can be interpreted in terms
of scattering of the quasiparticles with quasicritical mixed
spin and charge fluctuations [34].

The idea that the pseudogap could (not only) arise
from pairing in the particle-particle channel, but also from
different scattering mechanims (like CDW fluctuations)
finds an additional support in the recent analysis of ref-
erence [35], where the experimental results on the low-
temperature penetration depth suggest that the doping
behavior of the low-temperature gap near the nodes in
the (1,1) direction is similar to what expected from stan-
dard d-wave BCS theory with the gap scaling with Tc.
This is in contrast with the behavior of the pseudogap
measured at the k-points around (±π/a, 0) and (0,±π/a)
in ARPES experiments below T ∗, which increases with
decreasing Tc. This suggests the possibility that at high
temperature (T ∗ > T > Tc) the gap is due to CDW fluc-
tuations scattering in the particle-hole channel. In this
regard it was shown in references [1,12] that the incom-
mensurate CDW scattering resulting from the competi-
tion between phase separation and long range repulsive
Coulomb forces, occurs near some scattering vector qc not
related to the Fermi vector kF. It was also shown within a
standard large-N approach [1,12] that the effective scat-
tering amplitude close to qc in the particle-hole channel is
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strongly attractive and similarly structured in momentum
space in the particle-particle channel also, thus resulting
in substantial pairing in the d-wave channel. Within this
scenario, the strong momentum-dependent effective inter-
action is responsible both for (preformed) pairing and for
pseudogap formation due to dynamical charge modula-
tion. Therefore searching for spectral features arising from
scattering mechanisms acting in the particle-hole channel
is not necessarily in contrast with the interpretation of
other features in terms of pairing in the particle-particle
channel.

In the present paper we are interested in the question if
incommensurate CDW scattering, resulting from the com-
petition between phase separation and long range repul-
sive Coulomb forces, can account for some of the above
anomalous features observed in photoemission experi-
ments. This problem was partly tackled in reference [34]
within a perturbative treatment of quasicritical spin and
charge fluctuations. This perturbative approach is unfor-
tunately not feasible in the underdoped region, deep in-
side the stripe phase. Therefore we perform here a mean-
field analysis, which should capture the non-perturbative
character of well-formed stripes. Of course, the dynamical
character of the stripe fluctuations will be missed. Nev-
ertheless, at short distances and time as those probed in
photoemission experiments, this description should be ap-
propriate.

We emphasize once again that the complexity of the
physics of the cuprates, particularly of the underdoped
ones, involves spin and Cooper as well as charge density
fluctuations. Our aim is therefore not to account for all the
spectral properties of these materials, which likely arise
from the interplay of all these mechanisms. We rather con-
servatively aim to point out that some of the prominent
(and puzzling) features of the cuprates could find a natu-
ral interpretation by assuming charge quasi-ordering.

The paper is structured as follows. In Section 2 the
model and the general formalism are presented. Section 3
contains the physical results for the Fermi surface and the
spectral densities, which are discussed and summarized in
the conclusive Section 4.

2 Formalism

Starting point is the Hubbard-Holstein model with an
additional in-plane long-range Coulomb interaction

H = −t
∑
〈i,j〉,σ

(c†iσcjσ +H.c.)

− t′
∑
〈〈i,j〉〉,σ

(c†iσcjσ +H.c.)

+ g
∑
iσ

(A†i +Ai)(niσ − 〈niσ〉)

+ ω0

∑
i

A†iAi − µ0

∑
iσ

niσ + U
∑
i

ni↑ni↓

+
1
2

∑
q

Vc√
G2(q)− 1

ρqρ−q (1)

where ciσ(c†iσ) destroys (creates) an electron with spin σ

at site i and Ai(A
†
i ) destroys (creates) a local Holstein-

type phonon at site i. The summation over nearest- and
next-nearest neighbour sites is indicated by 〈i, j〉 and
〈〈i, j〉〉, respectively.

∑
σ niσ =

∑
σ c
†
iσciσ is the local elec-

tron density and its Fourier transform is given by ρq =∑
kσ c
†
k+qσckσ . The last term in equation (1) describes

the Coulomb interaction between electrons on a two-
dimensional, square lattice (lattice constant a in x- and y-
direction), which is considered as a plane embedded in the
3-dimensional lattice (plane distance d in the z-direction).
The dielectric constants in the plane and perpendicular to
it are given by ε‖ and ε⊥, respectively. The Coulombic cou-
pling constant is Vc = e2d

2ε⊥a2 . On the z = 0 plane the mo-
mentum dependence of the Coulomb potential is found to
be G(qx, qy) = [ε‖/ε⊥(a/d)2][cos(aqx) + cos(aqy)− 2]− 1.
As usual, the sum in the Coulombic potential does not
include the zero-momentum component, since we are sup-
posing that the diverging q = 0 interaction between elec-
trons is canceled by the contribution of a uniform posi-
tively charged ionic background.

Since we are interested in the limit of strong local re-
pulsion, we take the limit U →∞, which gives rise to the
local constraint of zero double occupancy

∑
σ niσ ≤ 1.

To implement this constraint we use a standard slave-
boson technique [36,37] by performing the usual sub-
stitution c†iσ → c†iσbi, ciσ → ciσb

†
i and implement the

local constraint by a local Lagrange multiplier λi. The
model can first be solved in the mean field approximation
by setting the b(†)i and λi bosons to their constant self-
consistent values b0 and λ0, respectively. At this stage the
phonons and the Coulombic interaction decouple from the
fermionic quasiparticles for an homogeneous mean-field
solution. The system then results in free quasiparticles
with a shifted chemical potential µ = µ0 − λ0 and a dis-
persion Ek = −2tb20εk, where εk = [cos(akx) + cos(aky] +
t′/t[cos(akx+aky)+cos(akx−aky)] and b20 = δ corresponds
to the concentration of doped holes. The mean-field value
for λ0 is determined by λ0 ≡ λ0

0+(t′/t)λ1
0 = 2t

∑
k f(Ek)εk

where f(E) is the Fermi function.
The effective interaction leading to scattering between

quasiparticles arises from the exchange of the bosonic
fields beyond the mean-field approximation. Working
within the radial gauge [37] one can define a three-
component field αµ = (δr, δλ, δφ) where δφ is the lattice
displacement field, and δr, δλ are the fluctuating parts of
the modulus of the b(†)i -bosons and of the Lagrange multi-
plier λi respectively. The static bare scattering amplitude
in the particle-hole channel can be written as [12]

Γ0(k, k′; q) = −
∑
µν

Λµ(k′,−q)Dµν
0 (q)Λν(k, q) (2)

where the vertices Λµ coupling the fermionic quasiparti-
cles to the bosons are defined as

Λr(k, q) = −2tb20(εk+q/2 + εk−q/2)

Λλ(k, q) = i

Λφ(k, q) = −2g

and Dµν
0 (q) denotes the matrix of the bosonic Greens

function [12] with the inverse having all elements zero
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except for

[D0]−1
r,r = δ

[
λ0

0[sin2(qxa/2) + sin2(qya/2)]

+ (t′/t)λ1
0[sin2((qx − qy)a/2)

+ sin2((qx + qy)a/2)]
]
,

[D0]−1
r,λ = [D0]−1

λ,r = iδ,

[D0]−1
φ,φ = 2ω0. (3)

We finally obtain a Hamiltonian, describing the effective
interaction between quasiparticles

H =
∑
kσ

Ekc
†
kσckσ +

1
2

∑
q

Vqρqρ−q (4)

where the static effective interaction is given by

Vq = Γ (kF, k
′
F; q, ω = 0)

= Ũ + γq −
2g2

ω0
+

Vc√
G2(q)− 1

and

Ũ = −4EF/δ

γq =
λ0

0

δ
[sin2(qxa/2) + sin2(qya/2)]

+
t′

t

λ1
0

δ

[
sin2

(
(qx − qy)a/2) + sin2((qx + qy)a/2

)]
.

(5)

Within a Fermi-liquid scheme, Vq represents the effective
residual interaction between the quasiparticles once the
screening due to intraband particle-hole quasiparticle bub-
bles is disregarded.

The Hamiltonian (4) is the starting point of all further
investigations. Its interaction consists of a part, Ũ+γq, in-
creasing with |q|, which describes the residual scattering of
the quasiparticles through the slave-bosons exchange. The
superposition of the long-range Coulombic part causes the
interaction to exhibit a minimum as a function of q. The
electron-phonon coupling 2g2/ω0 rigidly shifts the poten-
tial to lower values. This will induce an instability in the
density-density response function at a critical value of
q = qc when 1+VqcΠ(qc) = 0, whereΠ(q) is the particle-
hole fermionic bubble. This instability marks therefore a
transition to an incommensurate CDW with scattering
vector qc [38].

To proceed we will approximate the effective model
equation (4) by a Hartree factorization and assume that
the symmetry of the system is broken with respect to a
given vector qc and its multiples. Notice that retardation
effects arising from the frequency dependence of the to-
tal scattering amplitude have been neglected at this level.
This mean-field treatment of equation (4) finds some jus-
tification in investigating static or low-energy properties
of the quasiparticles close to the Fermi level, whereas this
approximation is crude in the analysis of dynamical prop-
erties at frequencies, which are comparable with the typ-
ical energies of the exchanged boson.

In order to reproduce the “unperturbed” Fermi surface
(i.e. of the overdoped system) of the Bi2212 compounds
at optimal doping we take the hopping parameter t′ to be

t′ = −0.45t, which leads to an open Fermi surface cen-
tered around (±π/a,±π/a). It turns out that within a
linear response approach as in reference [12], for this kind
of bandstructure the CDW instability occurs first in the
(1,0) or (and) (0,1) directions. In fact, a negative value
of t′ enhances the density of states around the M -points,
which mirrors in an enhancement of the fermionic bubble
Π(q) in the (1,0) and (0,1) directions. Thus in a RPA-like
treatment the divergence of the density-density response
function preferably takes place for q = qc in the (1, 0) or in
the (0, 1) directions. Within a linear-response analysis, the
instability is forced to occur at a given wavevector and the
above arguments are in favor of the instability taking place
with a modulation alternatively in the x or y direction de-
scribed by the order parameter 〈ρq〉1D =

∑
n〈ρq〉δq,nqx/yc

.
However, a non-linear instability (as the one here de-
scribed by a standard set of Hartree mean-field equations)
can also occur simultaneously along both directions lead-
ing to a two-dimensional eggbox type modulation of the
charge. In this case, the density expectation value is given
by 〈ρq〉egg =

∑
n〈ρq〉[δq,nqxc + δq,nqyc ].

Although we are now dealing with an effective one-
particle Hamiltonian, it is clear that the system cannot
be diagonalized for general incommensurate qc vectors.
We therefore represent qc as

qc =
π

a

(
nx
mx

;
ny
my

)
(6)

which allows us to simulate the “incommensurability” by
increasing the values for both ni and mi, respectively.
Once the scattering term in equation (4) is decoupled
à la Hartree, for each k-point in the reduced Brillouin
Zone (BZ), the bare Bloch functions Ψk(n) ≡ Ψ(k + nqc)
with k-vector k,k+qc,k+2qc, . . . ,k+nmaxqc, are mixed
by the interaction. nmax depends on qc via the condition
k + (nmax + 1)qc = k. For each k-point, the Hamilto-
nian can be put in a matrix form, which can be diag-
onalized thus finding the linear transformation from the
bare Bloch states Ψk(n) to the new eigenstates Ψk(n) =∑
m ak(n,m)Φk(m). The system can be diagonalized nu-

merically and the CDW order parameters χn = Vnqc〈ρnqc〉
are determined self consistently. Once self-consistency is
reached, the eigenvalues Ẽk(m) give the band structure of
the system.

The spectral function in the full BZ then consists of a
ensemble of weighted delta-functions and is given by

Ak+nqc(ω) =
∑
m

a2
k(n,m)δ

(
ω − Ẽk(m)

)
. (7)

It should be noticed that this approach maintains its full
validity as long as the initial constraint of no double oc-
cupancy is satisfied. Therefore we will restrict in the fol-
lowing to the cases where the CDW order parameter is
small enough that the local density never exceeds one,∑
σ ni,σ ≤ 1.

3 Results

In this section we will discuss the bandstructure, Fermi
surface and photoemission spectra resulting from either
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1-d or eggbox type CDW scattering. For simplicity, in
the following a planar cell of unitary length (a = 1) will
be used. Since in the sytems with two CuO2 layers per
unit cell (as in Bi2212) different stripe orientations in
different planes or also in different regions of the same
plane may be realized, we consider also the case of su-
perimposed (10)- and (01)-stripes. On the other hand the
eggbox-solution, where the symmetry is broken in the x
and y directions at the same time, can be regarded as a
model for 1-d stripes fastly fluctuating between the (10)-
and (01)-direction, while maintaining a fixed |qc|. Further-
more, having in mind the possibility of dynamical CDW
scattering we also investigate averaged disordered realiza-
tions of an eggox charge modulation, where fluctuations
in the absolute length of the scattering vector will be con-
sidered.

3.1 One-dimensional CDW phase

The results in this section supplement considerations in
reference [22] where some effects of 1-d CDW scattering on
the spectral properties were investigated. Here we analyze
the consequences of CDW scattering on the bandstruc-
ture and, differently from reference [22], we start from an
open Fermi surface (induced by a next-nearest neighbor
hopping term t′ as discussed in the previous section).

Figure 1 displays the calculated Fermi surface (FS) of
a one-dimensional (1,0)-CDW for a parameter set close to
the instability and doping δ = 0.2. Parameters such that
qc ≈ (π/4, 0) were chosen, corresponding to a charge mod-
ulation with a period of 8 planar unit cells (here and in the
following we will consider a unitary lattice spacing, a=1).
Since we diagonalize the system in a reduced BZ defined
by the choice of qc in equation (6) the defolding of the
bands leads to a redistribution of spectral weight for the
FS states. The photoemission intensity for each k-point is
given by the following integration over an energy window
around the Fermi energy Ik =

∫ EF+ε

EF−ε dωf(ω)Ak(ω) where
f(ω) denotes the Fermi function and Ak(ω) is the spectral
function defined in equation (7). For simplicity the inten-
sity range is divided into three ranges for high (Ik > 0.5,
full circles), intermediate (0.1 < Ik < 0.5, open circles)
and low (0.01 < Ik < 0.1, dots) intensity.

Similar to the results of reference [22] there appear
displaced shadow bands with low intensity which are due
to qc-scattering processes of the original FS states. How-
ever, since we started with an open Fermi surface (due to a
quasi one-dimensional bandshape around (π, 0), (0, π)) the
k-space regions around the M -points are strongly affected
by the scattering. Moreover, there appears an asymme-
try between these two areas since around the M -point the
scattering is along the FS branches whereas at M̄ it con-
nects the branches centered around X and Y . As a con-
sequence more k-states are reduced in intensity around
(π, 0) since the number of states with approximately the
same energy that can be connected by qc is larger than
around (0, π). To analyze the electronic structure in more
detail we plot in Figure 2 the bands with weight larger
than 1% in the interesting symmetry directions Γ → X

−3.2 −2.4 −1.6 −0.8 0.0 0.8 1.6 2.4 3.2
−3.2

−2.4

−1.6

−0.8

0.0

0.8

1.6

2.4

3.2

� M

�M X

Fig. 1. Fermi surface for a 1-d charge modulation near the
CDW instability where only the first harmonic χ1 = 0.04 is
different from zero. Parameters: δ = 0.2, α = −0.45, ω0 =
0.06 eV, g = 0.46 eV, Vc = 1.65 eV. CDW modulation |qc| =
0.79 in direction of Γ −M . The plot is for temperature T =
100 K and the energy window around EF has choosen to be
50 meV. Intensities: I > 50%: full points, 10% < I < 50%:
circles, 1% < I < 10%: small dots.

and M → X . The intensity range is divided in the same
way as in Figure 1 and the same symbols are used. Mov-
ing along Γ → X (Fig. 2a) one observes a rich gap struc-
ture around Γ which diminishes upon approaching the FS
crossing where besides the main band only the two weak
shadow bands survive. The multiband features around Γ
are due to the fact that at the bottom of the band its
slope is small and therefore many states with similar en-
ergy can be connected by the CDW vector. Taking the
cut along M → X (Fig. 2b), which is orthogonal to qc,
one observes that the CDW has induced the formation of
a second band which upon approaching X rapidly loses in
intensity. On the other hand the band along the M̄ → X
direction (Fig. 2c) displays a CDW gap at the FS crossing
since this direction is parallel to qc and the size of the
scattering vector is of the same order than the FS branch
separation at (π, 0). In Figure 3 we show the energy distri-
bution curves corresponding to the bandstructure cuts of
Figure 2. Along the Γ → X direction (Fig. 3a) the gapped
structure around Γ appears as a broad multipeaked fea-
ture which evolves into a single peak upon moving towards
the X-point.

For the cut along M → X one observes two peaks
crossing the FS at (π, 0.39) and (π, 0.52) corresponding
to the two bands in Figure 2b. The CDW along M̄ → X
displays in a peak first moving towards the Fermi energy
and then bending back to lower energies (Fig. 3c). How-
ever, this gap no longer can be detected when we consider
a system with superimposed (10)- and (01) CDW scatter-
ing. The corresponding Fermi surface, bandstructure and
energy distribution curves are plotted in Figures 2d, 3d
and 4 respectively. Although there is still reduced weight
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Fig. 2. (a-c): Cuts of the bandstructure in the full Brillouin
zone along various symmetry directions for (10)-scattering, cor-
responding to the Fermi surface in Figure 1. (d): Superposition
of the M → X and the M̄ → X cut, corresponding to the
Fermi surface in Figure 1. Intensities: I > 50%: full points,
10% < I < 50%: circles, 1% < I < 10%: small dots..

of the k-states around (0, π), (π, 0), which are now equiv-
alent, the CDW gap at M̄ is no longer visible in Fig-
ure 3d since the averaged bandstructure is dominated by
the states around the M -point.

It is also of interest to investigate the band dis-
persions along the Γ → M and Γ → M̄ directions.
Along these directions a substantial enhancement of the
van Hove singularities have been observed by ARPES
experiments [18,20,21] and the obvious question arises
whether this feature can arise from CDW scattering. Fig-
ure 5 reports in the (a) and (b) sectors the results of our
calculation starting from an unperturbed bandstructure
(indicated by the diamonds in Figs. 5a and 5b). It is ap-
parent that multiple non-dispersive shadow bands appear
along the Γ →M direction as a result of the CDW scat-
tering, with a substantial redistribution of the spectral
weight both at higher and lower energies. This latter oc-
currence suggests that indeed the broadening of quasipar-
ticle spectra towards lower energies could experimentally
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Fig. 3. Photoemission spectra corresponding to the cuts in
Figure 3. The fermi function has been added as a background.
The broadening of the δ-functions is 25 meV and the temper-
ature T = 100 K.

be seen as a broadening in k-space of the area where the
band is non-dispersive. For the presently considered (10)
one-dimensional scattering, the same does not hold in the
Γ → M̄ direction, where the shadow bands are strongly
dispersive and much less numberous (Fig. 5b). As a con-
sequence the spectra around M̄ would hardly look like
an enhanced van Hove singularity at low energy. How-
ever, the possibility still remains open that the spectra
of the real materials can result from the (nearly static)
superpositions of the spectra in Figure 5a, and 5b as a
consequence of the different orientation of the stripes on
different CuO2 planes or on different regions of the same
plane. This is depicted in Figure 5c. Alternatively, if the
stripes are fastly fluctuating, their effect on the spectra
could better be mimicked by our (static) eggbox solution
described below.

3.2 Ordered eggbox phase

In this section we are concerned with a two-dimensional
charge modulation resembling the shape of an eggbox.
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Fig. 4. Fermi surface for the superposition of the (10)-stripe
of Figure 1 with the equivalent (01)-charge modulation. Pa-
rameters: δ = 0.2, α = −0.45, ω0 = 0.06 eV, g = 0.46 eV,
Vc = 1.65 eV. CDW modulation |qc| = 0.79. The plot is for
temperature T = 100 K and the energy window around EF

has choosen to be 50 meV. Intensities: I > 50%: full points,
10% < I < 50%: circles, 1% < I < 10%: small dots.

Figure 6 displays the calculated FS of a regular 2-d
CDW for a parameter set close to the instability and dop-
ing δ = 0.2. Similar to Figure 1 the scattering mostly af-
fects the states around (0, π) and (π, 0), but now of course
the features at M and M̄ are symmetric. Moreover, the
region of reduced intensity is much larger than for the su-
perimposed (01)- and (10)-CDW in Figure 4 (note that
in both plots the strength of the order parameter is the
same).

An additional quite interesting feature is the appear-
ance of shadow Fermi surfaces in the (1,±1) directions,
giving rise to “pockets”. This feature was already hinted
to in the Fermi surface of Figure 4, where it was, however
less pronounced. In particular, here moving from the Γ
point towards the X (or the other equivalent points) one
first finds some spectral weight at the Fermi energy for
points located around (0.8, 0.8) in k-space. Moving fur-
ther towards X one meets the main Fermi surface with
highest intensity around (1.2, 1.2), and then weak (less
than 10% of intensity) features at (1.6, 1.6). It is not un-
conceivable that these multiple crossings of the (shadow)
Fermi surface(s) have been observed, although the com-
mon interpretation refers to magnetic scattering [32]. This
finding suggests that, together with the magnetic scatter-
ing, charge scattering could cooperate to bring spectral
weight at the Fermi surface in a “pocket-like” shape [34].

The effect of the 2-d scattering becomes more trans-
parent in the bandstructure cuts plotted in Figure 7. Scan-
ning along the diagonal direction gives a strong splitting of
states around the Γ point similar to our previous findings
for 1-d scattering. Moving further towards the X-point
most of these states rapidly lose in intensity and at the
FS crossing there is only one main band left together with
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Fig. 5. (a-c) Bandstructure for one-dimensional CDW scatter-
ing along the (10)-direction for the same parameters as in Fig-
ure 1 of the paper. (a) Γ → M = (π, 0), (b) Γ → M̄ = (0, π),
(c) Superposition of (a) and (b). The “unperturbed” band is
indicated by diamonds. (d) The same cut for 2-d eggbox scat-
tering. Here the “unperturbed” band is indicated by the full
line. Intensities: I > 50%: full points, 10% < I < 50%: circles,
1% < I < 10%: small dots.

two shadow bands with low intensity in accordance with
the FS shown in Figure 6.

The band structure along M → X is plotted in Fig-
ure 7b. Also in this case we observe that at the M -point
the CDW scattering has induced various bands with in-
termediate and low intensity. At the former FS crossing
(indicated by the arrow) now a gap occurs which is of
the order of the CDW order parameter χ. Although the
main band (full circles) bends upwards when approach-
ing the Fermi level there is a FS crossing by the shadow
band with intermediate intensity. This crossing occurs at
a slightly larger ky value than in the unperturbed system
which mirrors in Figure 6 as a broadening of the tube
structure around the M -points.

In Figure 8 we show the energy distribution curves
along the Γ → X and M → X directions. Scanning along
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Fig. 6. Fermi surface for an eggbox type charge modulation
near the CDW instability where only the first harmonic χ1 =
0.04 is different from zero. Parameters: δ = 0.2, α = −0.45,
ω0 = 0.06 eV, g = 0.46 eV, Vc = 1.65 eV. CDW modulation
|qc| = 0.79. The plot is for temperature T = 100 K and the en-
ergy window around EF has choosen to be 50 meV. Intensities:
I > 50%: full points, 10% < I < 50%: circles, 1% < I < 10%:
small dots.
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Fig. 7. Bandstructure in the full Brillouin zone corresponding
to the Fermi surface in Figure 1. Intensities: I > 50%: full
points, 10% < I < 50%: circles, 1% < I < 10%: small dots.
(a) Γ ≤ k ≤ X, (b) M ≤ k ≤ X.

the diagonal one clearly observes the multiple peak struc-
ture for the deeply bound states in Figure 7a. However,
approaching the FS crossing, due to the rapid loss of inten-
sity in the scattered bands, there appears a evolution into
a single peak structure which crosses the Fermi level at
k = (1.18, 1.18). In the right panel of Figure 8a we plot a
comparison of the CDW spectra with the peak evolution
of the homogeneous system for selected k-points. From
this plot it becomes clear that along the diagonal direc-
tion the peak structure for the symmetry broken system
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Fig. 8. Photoemission spectra for cuts along (a) Γ ≤ k ≤ X,
(b) M ≤ k ≤ X. The fermi function has been added as a
background. Solid lines: eggbox solution for the same parame-
ter set as in Figure 1. Dashed lines: homogeneous system. The
broadening of the δ-functions is 25 meV.

approaches the unperturbed form as one approaches EF.
On the other hand, scanning along the M → X direction,
the peak structure basically is built up by the two bands
with intermediate intensity below EF which are shown in
Figure 7b. Therefore one observes a double peak structure
at the M -point where the lower peak decreases in inten-
sity upon approaching the Fermi level. Due to the induced
CDW-gap at the FS crossing of the homogeneous system
k = (π, 0.52) there is a shift of the spectra to lower energy
as can be seen from the right panel of Figure 8b. It is also
quite interesting to see how the CDW-gap occurring at
k = (π, 0.52) evolves when one moves along the FS of the
unperturbed system. The corresponding energy distribu-
tion curves are shown in Figure 9. It turns out that the
gap first keeps its value for small angles up to Θ ≈ 6o.
Moving towards the diagonal, the (pseudo)gap moves at
energies below the Fermi level, so that at the Fermi energy
it rapidly decreases and vanishes. This occurs at Θ ≈ 20o.
In addition it is again evident that upon approaching the
diagonal direction the CDW peak structure evolves into
the unperturbed one. These findings may correspond to
the experimentally observed shrinking of the FS [28].
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We now conclude this analysis of the 2-d eggbox CDW
scattering by considering the relevant issue of the enhance-
ment of the van Hove singularity around the M and M̄
points. In particular, as it can be seen in Figure 5d, one
finds a generic broadening of the spectra, with dispersion-
less portions of the spectrum scattered at both higher and
lower energies with respect to the unperturbed quasiparti-
cle band. Moreover, two dispersive shadow bands of weak
intensity cross the Fermi energy nearly halfway between
Γ and M . All these effects contribute to bring spectral
weight at closer distance from the Fermi level. Once the
spectral features observed in the present simplistic mean-
field treatment are broadened by the fluctuative charac-
ter of the CDW and by the many-body effects acting in
the real systems, it is not unconceivable that our present
findings correspond to an extension of the dispersionless
region of the experimental band structure.

3.3 Disordered eggbox phase

In the preceding section we have considered an effective
one-particle Hamiltonian so that all poles of the resulting
spectral function correspond to delta functions. Now we
want to extend our results to have some qualitative idea
of a more dynamical description of the problem, i.e. the
quasiparticle coupling to collective incommensurate CDW
fluctuations.

As in reference [22] we start from a phenomenological
one-particle Hamiltonian

H =
∑
k

Eknk +
∑
i

V (Ri)ni (8)

where the kinetic part is the same as in the preceding
section and V (Ri) represents an effective eggbox potential
given by
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Fig. 10. Fermi surface for a disordered eggbox charge modu-
lation. Parameters: δ = 0.2, α = −0.45, p = 3, V0 = 0.12 eV.
The plot is for temperature T = 100 K and the energy window
around EF has choosen to be 50 meV. Intensities: I > 50%:
full points, 10% < I < 50%: circles, 1% < I < 10%: small dots.

V (Ri) = 2V0

∑
n

sech
(
Rxi − xn

ξ

)
sech

(
Ryi − yn

ξ

)
·

(9)

The amplitude and broadening of the charge modulation is
determined by V0, ξ and xn, yn fix the positions of the indi-
vidual “eggboxes”. In accordance with the ordered eggbox
modulation we choose a mean charge separation of 8a and
define xn+1−xn = yn+1−yn = 8a+η where “a” is the lat-
tice constant and η is a random number varying between
−pa < η < pa. Taking p = 0 one has again an ordered
eggbox potential whereas upon increasing p (pmax = 7)
long-range charge order is destroyed to an increasing de-
gree. The charge amplitude V0 is restricted again to val-
ues where zero double occupancy at each lattice site is
preserved. The results presented below are averages over
five random configurations calculated by diagonalizing a
square lattice with dimension 40×40 in real space. Doping
is again δ = 0.2 and the secans-type structure is broad-
ened by ξ = 2.

Figure 10 displays the Fermi surface for a disordered
eggbox-type charge modulation. The qualitative features
are the same as in Figure 6, namely the reduction of inten-
sity around the M -points. However, the displaced shadow
bands are no longer visible now. Instead the Fermi surface
is smeared in k-space i.e. its boundaries consist of states
with low intensity (< 10%). Around the M -points these
states completely fill up the tube structure. This could
correspond to the findings of sequential angle-scanning
photoemission where diffuse features in these regions have
been detected [26] and to the suppression of the FS ob-
served in ARPES [28].

Since we are considering averages over disordered
charge configurations the energy bands corresponding to
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Fig. 11. Photoemission spectra for cuts along Γ ≤ k ≤ X
and M ≤ k ≤ X for the same parameter set then in Figure 6.
The broadening of the δ-functions is 25 meV. Dashed lines:
homogeneous system. Solid lines: spectra for the disordered
eggbox system. The parameter p defining the destruction of
long-range charge order is p = 3 in (a) and p = 7 in (b).

Figure 7 now are also smeared along the energy axis there-
fore removing the fine structure of the CDW gap topology.
This can be seen in Figure 11 where we have plotted the
energy distribution curves along the Γ → X and M → X
directions in comparison with the homogeneous system
for two different values of the parameter p which defines
the degree of suppression of long-range charge order. This
smearing of the individual CDW peaks is of course more
pronounced for p = 7 in Figure 11b than for p = 3 in Fig-
ure 11a. However, scanning along the Γ → X direction
we observe the same feature than for the ordered eggbox
modulation, namely the evolution of the spectra into a
single peak structure upon approaching the Fermi level
thus recovering the FS segment of the quasiparticle. On
the contrary, at the M -point the quasiparticle peak is now
completely suppressed and the spectra are described by a
broad feature extending to very low energies.

4 Discussion and summary

In this paper we have investigated the possible conse-
quences of incommensurate CDW scattering with regard

to the unusual Fermi surface and photoemission features
in underdoped bismuth cuprates already mentioned above.
Our results have been obtained within a scheme, which
is subjected to some limitations both at the level of the
starting model and of its treatment. In particular, only the
physics of CDW modulations has been considered, thus
neglecting the relevant interplay between charge, spin, and
Cooper pair fluctuations. Nevertheless it is quite interest-
ing and instructive by itself that our treatment of a pure
CDW symmetry broken system still captures some fea-
tures of the observed spectral properties. This indicates
that charge-ordering can indeed play a role in determin-
ing the properties of the cuprates.

The simplified model considered here has been approx-
imately treated in a mean-field scheme aiming to capture
features of well-formed locally ordered stripes in the un-
derdoped cuprates. In this scheme the fermionic quasipar-
ticles do not interact neither among themselves nor with
the collective CDW fluctuations. Instead the static sym-
metry breaking due to charge modulation produces Bragg
scattering giving rise to multiple bands and gap opening.
As a result the bands arising from the mean-field descrip-
tion are due to δ-like quasiparticle peaks, which obviously
do not individually correspond to the real experimental
features. Nevertheless, it is worth noting that the multiple
Bragg scattering due to incommensuration leads for most
k-points to the appearance of multiple quasiparticle peaks
(the shadow bands, see Figs. 2, 5, and 7). It is quite natural
that the broadening arising from the scattering between
quasiparticles and the scattering between quasiparticles
and collective modes will mix these peaks thus producing
the broad features commonly detected in photoemission
experiments. Still we believe that our analysis provides
the location and relative position of the spectral features.

We considered one-dimensional charge modulations
along the (1,0) and/or (0,1) as well as a two-dimensional
eggbox-like texture. The one-dimensional solutions could
account for some enhancement of the van Hove singulari-
ties, but do not seem particularly successful in describing
the appearance of a pseudogap near the M and M̄ points.
On the other hand the eggbox case turns out to be partic-
ularly appealing. The main findings are that the 2-d egg-
box CDW scattering might account both for a flattening of
the band dispersion in the Γ →M and Γ → M̄ directions
and for the arising of a leading-edge gap around the M, M̄
points leaving finite portions of the Fermi surface gapless.
As discussed in the introduction, this latter quite unusual
and non BCS-like behavior of the gap has indeed been ob-
served [28] and suggests that the charge fluctuations in the
particle-hole channel could substantially participate to the
spectral features around the M, M̄ points. In this regards
our finding supports the idea that the scattering induced
by a charge ordered superstructure works in many aspects
in the same direction than mechanisms involving incoher-
ent pairing correlations (possibly cooperating with mag-
netic scattering [34]). On the other hand, we also found
that a disordering of the eggbox structures “washes out”
the weak low-energy features and brings about the disap-
pearance of the leading-edge gap due to charge scattering,
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but preserves the feature of Fermi surface only formed by
disconnected arcs. In this last situation, the pseudogap
will only appear as a (robust) suppression of the spectral
weight, which is shifted at higher binding energies.

The overall success of the eggbox CDW scattering in
reproducing some highly non-trivial features of the single-
particle spectra of the underdoped cuprates suggests that
a dynamical charge pseudo-ordering is a relevant aspect
of the physics of these materials.
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